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Abstract:

Malware detection systems have faced significant hurdles and strain in recent years due to the fast growth in the
quantity and variety of Android malware. Static detection is a popular technique in academics and business for
identifying Android malware. However, the current static detecting approaches compromise the unduly high
analysis complexity and time cost in order to enhance the detection accuracy. Furthermore, a significant quantity
of data becomes redundant due to the connection between static characteristics. As a result, our research
suggests a static technique based on sensitive patterns for identifying Android malware. It reduces the creation of
superfluous data by mining common combinations of sensitive permissions and API requests in both dangerous
and benign applications using an enhanced FP-growth algorithm. Furthermore, the multi-layered gradient
boosting decision trees approach is used in this work to train the detection model. Additionally, a dual similarity
combination approach is suggested to assess how similar certain sensitive patterns are to one another. The
experimental findings demonstrate the excellent generalization capacity and high accuracy of our suggested

detection approach.
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1 INTRODUCTION

The use of different mobile communication devices,
such as smartphones, tablets, and wristbands, is rising
in tandem with the rapid development of these
technologies. Numerous mobile terminal operating
systems have surfaced to provide a satisfactory user
experience; the Android operating system (OS) has
the most market share among them. As to the
International Data Corporation (IDC) study on the
worldwide smartphone operating system industry,
Android holds the top position with a market share of
86.7% [1]. As shown in Fig. 1, the Android system
often uses a hierarchical design architecture. The
Linux kernel serves as the foundation for the Android
system's kernel area. The virtual machine operating
environment, API framework, and local system

library make up the top user space of the Android
system. Permission access requests serve as the link
between the user and kernel spaces. This hierarchical
structure has the benefit of hiding the particulars of
the bottom layer's implementation. It may conceal
layer discrepancies and provide consistent services to
the top levels using the lower layers. Therefore, when
changes happen at a lower layer, the Android
system's hierarchical structure is unaffected on the
top layer. Moreover, fixed Service Access Points
(SAP) may be provided by each layer to attain high
cohesiveness and low coupling. The Android
system's hierarchical structure provides a robust
open-sourcing feature and a relaxed approach for
application release certification. With the Android
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system, developers are free to publish their own
applications without any limitations. Additionally,
users have access to a variety of download locations
for these necessary apps, such as third-party app
markets and official app stores. However, Android
has emerged as one of the most susceptible platforms
to malware attacks due to its open-sourcing
characteristic.

According to McAfee's mobile threat report [2],
which was published in the first quarter of 2021,
there are already over 40 million mobile malware
samples in total, and the growth pace is still quite
rapid. Through analyzing the malevolent actions of
malware, we have ascertained that the majority of
them aim to pilfer users' confidential data, including
personal images, bank accounts, emails, text
messages, and phone contacts. This has the negative
effect of enabling criminals to gather this private data
via malware and utilize it for illicit operations to
generate revenue.
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Fig. 1: Android system architecture.

Researchers in academia and business have
developed several strategies and tools for detection in
order to safeguard users from malware and provide a
secure and healthy mobile communication
environment. Static detection is a commonly used
technique in the identification of Android malware.
This technique examines the content of an Android
application's APK files statically in order to identify
any possible security risks. Almost all static detection
techniques used nowadays are built on APK files. In
order to provide a thorough description of data
samples, existing static detection algorithms often use
the concept of "comprehensive analysis," which
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entails parsing as many files as possible from the
compressed package and extracting various sorts of
feature information from them. Even while this
method may provide outcomes that are somewhat
good, there are additional issues.

For instance, a thorough analysis results in an
excessive amount of analysis complexity and time;
also, data redundancy is caused by feature
correlations. Thus, the keys to figuring out if a
detection technique is efficient are what to pick as the
foundation for analysis and how to properly describe
the data sample.

2 RELATED WORK

A significant amount of relevant work has been done
to support the advancement of malware detection [3—
4].

2.1 Analysis of Static Detection

The majority of conventional detection techniques
rely on the signature authentication mechanism [5—6].
They entered the known harmful software's
signatures into the database. After that, the sample's
signature was taken out and matched to the database
to see whether any dangerous software was there.
Despite being straightforward and successful, this
strategy has two significant flaws: First, the unknown
malware cannot be found using the conventional
way. Malware can evade  signature-based
identification by making minor code changes in an
application that do not impact semantics. This is
because the corresponding signature of unknown
malware does not exist in the database and it is costly
to create a new signature and publish it through other
methods.

Malware detection now includes more static
characteristics in order to address the aforementioned
issues. Malware often has to request the necessary
authorizations before it can carry out destructive
operations like sending text messages and accessing
contact lists. As a result, permission-based static
detection techniques have been put out. As an
example, the authors [7] compared how permissions
were used by malicious and benign programs. They
discovered that there was no practical way to
differentiate them using those shared rights. When
the amount of permissions needed was little,
however, the difference became clear; Huang Liang
et al. [8] created a list of all permission combinations
that typically occur in malware and utilized it to
create a detection model.

The API, which serves as the foundation for
implementing application functionality in the
Android system, is a good representation of an
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application's behavior. Thus, many techniques for
static detection that rely on API analysis have been
researched. The writers [9] disassembled APK files,
for instance. It might gather API requests that pose a
significant risk to user security via data stream
analysis; To increase the detection accuracy, the
authors in [10] examined a variety of characteristics
in addition to permissions and APIs, including
activities, services, intents, and network addresses;
TaeGuen Kim et al. [11] expanded the feature set to
include opcodes and environment variables.

Furthermore, according to some studies, the use of
string characteristics is susceptible to dimensionality.
However, structural characteristics are better suited
for handling large amounts of data. Wei Wang et al.
[13] and Yao Du et al. [14] created the function call
graph based on the call relationship between
methods, while Jixin Zhang et al. [12] built the
Dalvik opcode graph and examined its topology
features, such as node number, probability density,
and graph distance, to characterize malware. In order
to classify malware, graph similarity was determined.

2.2 Artificial Intelligence

The fast advancement of artificial intelligence in
recent years has made machine learning a prominent
topic for study across many disciplines. Its ideas and
techniques have been used extensively in engineering
and scientific research to overcome challenging
issues. The core of malware detection is a
classification problem that satisfies relevant machine
learning constraints. As a result, enhancing detection
efficiency using machine learning has emerged as a
key area of research for malware detection.

In machine learning, supervised learning is one of the
most used techniques for training models. From the
labeled data, it derives the mapping relationship (i.e.,
function), and then uses this connection to conduct
instance inferences on the unlabeled data. Support
vector machines (SVM), decision trees, K closest
neighbors (KNN), Bayesian networks, and others are
examples of common supervised learning methods.
Because labeled data gathering is rather expensive,
supervised learning really takes a lot of time and
highly qualified professionals to finish. Unsupervised
learning has thus emerged as a different technique for
overcoming this constraint. The training data in
unsupervised learning is not labeled. The association
between the variables is discovered by the model
itself during its "self-learning" training phase. The
clustering method is the most often used
unsupervised learning algorithm. Literature [14], for
instance, examined the clustering K-MEANS
method. In order to create feature vectors, it gathered
the runtime traffic of Android apps and chose six
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characteristics: frame length, frame number,
connection duration, relative duration (time from the
first frame), source port, and destination port. The
experiment in [14] demonstrated the excellent
malware detection accuracy of the KMEANS
algorithm.

Deep learning has been steadily used in malware
detection with the arrival of neural networks and the
big data age. In reference [15], the writers established
a correlation between the attributes of static and
dynamic analysis. In [16], the authors used system
calls and permissions to model neural networks; in
[17], the authors proposed a convolutional neural
network-based system for Android malware detection
that used the application's original opcode sequence
as a feature; in [18], the detection system employed a
variety of classifiers, including deep neural networks.
Deep belief networks were used to characterize
malware in this study. It made a variety of data entry
possible, including permissions, intents, system
actions, and API calls.

3 PROPOSED METHOD

This research uses machine learning to provide a
static detection approach based on sensitive pattern
for Android malware detection. The general design of
the suggested technique is shown in Fig. 2. To find
out about permissions and API calls, it first
disassembles the Android applications' APK files.
Subsequently, sensitive patterns of both malware and
regular software are produced by clustering patterns,
mining common combinations, and filtering raw data.
The feature vectors containing the sensitive patterns
are then built.

Lastly, a machine learning approach is used to train
the malware detection model.
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Fig. 2: The overall architecture of the method.

3.1 Extraction of Raw data

In our suggested approach, sensitive patterns cannot
be created until the Android software's raw data has
been retrieved. Reverse engineering tools must thus
be used in order to retrieve the permission and APK
files from the raw data. As shown in Tab. 1, the
reverse engineering tool used in this work is Apktool
[19-20]. It offers a ton of commands for APK file
compilation and decompilation. To begin the
decompilation of the APK file, enter "apktool d
xx.apk" on the command line window, where xx is
the name of the APK file. After the command is
executed, a folder containing different decompiled
files will be generated in the same directory as the
APK file. The AndroidManifest.xml file, smali file,
res file, and assets file are the primary files in the
folder. The suggested approach focuses on the
permissions data from the androidmanifest.xml file
and the API call data from the smali file.

Tab 1: The relevant Apktool instructions (partial).

apktool d[ecode][options] <file_apk>
-f -force | Force delete destination directory
o --output The name of folder that gets
<dir> written
-frame- | Uses framework files located in
Pl path <di> <dir>
1 | --no-res Do not decode resources
-8 | --no-src Do not decode source
| ~frame-tag | Uses framework files tagged by
<tag> <tag>
o | forceall Skip changes detlection and build
all files
0 "?u.t PU " The name or apk that gets written
<dir>
~frame- | Uses framework files located in
P path <dir> dir>

Android offers an application framework with a
permission-based  security paradigm to limit
application access to permissions including phone,
network, contacts, SMS, and GPS position. As shown
in Fig. 3, the developer must utilize the <uses-
permission> element in AndroidManifest.xml to
specify the necessary permissions. Normal
permission, hazardous permission, and signing
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permission are the three categories into which these
permissions are separated [21]. By matching the term
".permission” in the AndroidManifest.xml file, our
suggested technique obtains the permission
information.

(1) Normal: The least dangerous kind of
authorization for the user, system program, or device
is this one. When an app is installed, regular rights
are often provided by default.

(2) Risky: This kind of authorization may access the
device's critical sensors and personal info.

As a result, when an application is installed, users
voluntarily provide potentially harmful rights.

(3) Signing: System programs have access to signing
rights. When an app requests permission and is
signed with the same developer certificate as the app
that requested it, the permission is granted.

Fig. 3: Permissions declared in AndroidManifest.xml

Fig. 4: API described in smali file.

4 EVALUATION
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We carry out in-depth trials to assess the
effectiveness of the suggested strategy.

4.1 The environment of simulation

Both malware and regular software samples were
included in the datasets utilized in this investigation.
The malware sample set among them is sourced from
the well-known malware-sharing website Virus Share
in the network security space. The sample set is
separated into two sections based on when the data
was gathered: 2791 malware samples in 2017 and
8183 malware samples collected between 2014 and
2016. There are 9058 normal software examples in
the normal software sample collection, which is
sourced from many official app stores including 360
Assistant, Google Play, and others. This research
employs the Virus Total tool to filter the crawling
regular software samples in order to assure the
quality of the dataset. Consequently, 8745 is the total
number of standard software samples that were
employed in the experiment.

Furthermore, the collection contains almost 90% of
samples that are less than 10MB. The percentage of
samples greater than 20 MB is around 3%. There are
two sizes of samples: one is merely 1KB and the
other is 87MB. About the experimental platform,
Windows 10 (64-bit) is the operating system, and
every experiment in this study is performed on a PC
with a dual-core 3.7GHz CPU and 8G of RAM. All
of the experimental programs are created in Python
and are operated via the Spyder software.

4.2 The Enhanced FP-growth Algorithm's
Performance

We evaluate the performance of the enhanced FP-
growth algorithm with the original FPgrowth in this
work. Each sample in our dataset has a varied amount
of sensitive permissions and API calls—anywhere
from handful to hundreds. The quantity of often
occurring item sets and the mining duration of the
two methods with varying minimal support are
shown in Table 1. The amount of frequent item sets
mined using the enhanced FP-growth is fewer than
that using the original one, as seen in Tab. 4, because
of the pruning technique. Furthermore, the difference
is more noticeable when the minimal support drops.

Therefore, while mining sensitive patterns, our
enhanced FP-growth may effectively prevent
duplication. Better yet, the enhanced FP-growth is
more efficient and can finish mining faster.
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Tab 4: A comparison of the two FP-growth's
performance

Original FP-growth Improved FP-growth

minSup num lime(s) num fimefs)
0.7 498 0.1 417 049
.6 992 0.87 827 (169

15 138 ANA 5295 483
14 03958 B 34403 19.25
)3 699861 14061 280684 9431

4.3 Performance of the mGBDT Algorithm

The mGBDT technique is included in our suggested
approach to train the detection model. We compare it
to established machine learning classification
methods like Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and
XGBoost in order to assess its performance.

The assessment metrics used in our experiment are
Accuracy, Precision, and Recall, as shown by the
formulae (15)—(17).

TP+TN )
Accuracy = (15)
: TPLFP4+TN4FN '
.. TP
Precision = (16)
= TP+FP '
7 TF r
Recall = TP En (17

Of these, TP and FP stand for the quantity of
malware that was accurately identified as such and
the quantity of regular software that was mistakenly
identified as malicious, respectively. The numbers
TN and FN stand for the number of malware that was
mistakenly identified as legitimate software and the
amount of properly identified normal software.

Accuracy
Preclsion

Recall

Detection Rate (5

B T T T T T
k| U] ¥ MiBaost aaHlT
Mgorithn
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Fig. 7 The effectiveness of various algorithms.

The detection results produced by using mGBDT and
comparison techniques to train the detection model
are shown in Fig. 7. As Fig. 7 illustrates, mGBDT
performs noticeably better than other methods. The
mGBDT has shown improvements in accuracy
ranging from 3%—6%, precision rate improvement
from 2%—4%, and recall rate rise from 3%-8%.

In this experiment, XGBoost—an enhanced gradient
boosting  decision  tree—demonstrates  greater
detection accuracy and recall. However, mGBDT is
more advantageous than XGBoost in terms of
accuracy. For malicious software detection systems,
this is crucial since high accuracy reduces the
possibility of false positives.

4.4 The Performance of Detection

We contrast the suggested approach with other
related approaches (the references [26] and [27]),
which also examine permissions and API calls of
Android applications, in order to verify the
superiority of the suggested approach. Reference [26]
examined how permissions and API updates varied
between Android system versions and suggested a
detailed malware detection technique for varying API
levels. The use of permissions and API calls in
malware and legitimate applications, respectively,
was examined in Reference [27]. Based on the
mapping link between permissions and APIs, it
selected 50 highly sensitive API calls as
differentiating characteristics.
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{a)} The detection performance of the
method in [26]
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(b) The detection performance of the
method in [27]

7.39

O

= Correct rate = Error rate

(c) The detection performance of the
method in this paper

7.3%

\

92.61

= Correct rate = Error rate

Fig. 8: Comparing the effectiveness of wvarious
approaches for detection

The detection performance of several approaches on
the dataset used in this work is shown in Fig. 8. On
our dataset, the compared algorithms provide
accuracy values of 90.18% and 92.61%, respectively.
They fall short of our suggested detection approach
by 93.99%. Thus, our suggested detection approach
may more accurately identify malware by examining
the permission data and API call data in the APK
files.

8 our method

100 - +— [26]
—— [27]
%5
a0
—_— - u u
F 85 . = .
= 1 . . i u
§ 507 .
2 1 *
A
»
04
fi-
T

Jm. Feb. Yer, Apr. My, June.
Different Month in The First Half Year of 2017
Fig.9 the effectiveness of modern virus detection.
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We assess the generalization for various detection
techniques on novel malware by using the samples
gathered between 2014 and 2016 as the training set
and the samples gathered during the first half of 2017
as the test set. The detection results for malware
samples published in various months of 2017 are
shown in Fig. 9. As we can see, our approach finds
new viruses more effectively. It implies that when
using our approach, the detecting system doesn't need
to be updated regularly.

4.5 How Well API Calls and Permissions Combine
This article generates critical patterns of Android
applications using both API calls and permissions.
We also run studies about the use of permissions or
API calls to demonstrate the efficacy of combining
them.

Performance of detection models constructed with
various attributes is shown in Tab. 5.

Feature Used Accuracy (%)
Only API calls 01.25
Only permissions 88.M
Combination of per.miss;iuns; 03,99
and API calls

A single kind of static feature has limits when it
comes to differentiating between dangerous and
benign programs, as Tab. 5 illustrates. We can
successfully enhance the detection model's
performance by merging many characteristics.

5 CONCLUSION

This research suggests a sensitive pattern-based
approach for Android virus detection. We efficiently
prevent repetition by mining frequently occurring
combinations of critical permissions and API
requests in both malicious and benign applications
using an enhanced FP-growth algorithm. To reduce
feature dimensionality, we cluster the produced
sensitive patterns based on text similarity and support
similarity. In addition, a malware detection model
with excellent accuracy and good generalization
ability is constructed using the multi-layered gradient
boosting decision trees approach. Nevertheless, this
paper's suggested detection approach merely takes
into account how often sensitive patterns appear in
malicious and benign software sets. It does not take
into account the variations in sensitive patterns in
certain samples. In order to more precisely describe
the samples, sample weight may thus be allocated to

ISSN: 0976-0172

Journal of Bioscience And Technology

www.jbstonline.com

sensitive patterns in future research projects based on
the quantity of API calls and other variables.
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