
Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 1

A Probabilistic Framework for Evaluating Trust and Detecting

Malicious Behavior in Online Recommendation Systems

Mr.N.Nagendra1., T.Nandini2

 1 Assistant Professor, Department of CSE, Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

2, B.Tech CSE (19RG1A0555),

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

 Article Info

 Received: 31-07-2022 Revised: 18-09-2022 Accepted: 30-09-2022

Abstract:

Malware detection systems have faced significant hurdles and strain in recent years due to the fast growth in the

quantity and variety of Android malware. Static detection is a popular technique in academics and business for

identifying Android malware. However, the current static detecting approaches compromise the unduly high

analysis complexity and time cost in order to enhance the detection accuracy. Furthermore, a significant quantity

of data becomes redundant due to the connection between static characteristics. As a result, our research

suggests a static technique based on sensitive patterns for identifying Android malware. It reduces the creation of

superfluous data by mining common combinations of sensitive permissions and API requests in both dangerous

and benign applications using an enhanced FP-growth algorithm. Furthermore, the multi-layered gradient

boosting decision trees approach is used in this work to train the detection model. Additionally, a dual similarity

combination approach is suggested to assess how similar certain sensitive patterns are to one another. The

experimental findings demonstrate the excellent generalization capacity and high accuracy of our suggested

detection approach.

Key words: Static detection; Sensitive pattern; Android malware

1 INTRODUCTION

The use of different mobile communication devices,

such as smartphones, tablets, and wristbands, is rising

in tandem with the rapid development of these

technologies. Numerous mobile terminal operating

systems have surfaced to provide a satisfactory user

experience; the Android operating system (OS) has

the most market share among them. As to the

International Data Corporation (IDC) study on the

worldwide smartphone operating system industry,

Android holds the top position with a market share of

86.7% [1]. As shown in Fig. 1, the Android system

often uses a hierarchical design architecture. The

Linux kernel serves as the foundation for the Android

system's kernel area. The virtual machine operating

environment, API framework, and local system

library make up the top user space of the Android

system. Permission access requests serve as the link

between the user and kernel spaces. This hierarchical

structure has the benefit of hiding the particulars of

the bottom layer's implementation. It may conceal

layer discrepancies and provide consistent services to

the top levels using the lower layers. Therefore, when

changes happen at a lower layer, the Android

system's hierarchical structure is unaffected on the

top layer. Moreover, fixed Service Access Points

(SAP) may be provided by each layer to attain high

cohesiveness and low coupling. The Android

system's hierarchical structure provides a robust

open-sourcing feature and a relaxed approach for

application release certification. With the Android

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 2

system, developers are free to publish their own

applications without any limitations. Additionally,

users have access to a variety of download locations

for these necessary apps, such as third-party app

markets and official app stores. However, Android

has emerged as one of the most susceptible platforms

to malware attacks due to its open-sourcing

characteristic.

According to McAfee's mobile threat report [2],

which was published in the first quarter of 2021,

there are already over 40 million mobile malware

samples in total, and the growth pace is still quite

rapid. Through analyzing the malevolent actions of

malware, we have ascertained that the majority of

them aim to pilfer users' confidential data, including

personal images, bank accounts, emails, text

messages, and phone contacts. This has the negative

effect of enabling criminals to gather this private data

via malware and utilize it for illicit operations to

generate revenue.

Fig. 1: Android system architecture.

Researchers in academia and business have

developed several strategies and tools for detection in

order to safeguard users from malware and provide a

secure and healthy mobile communication

environment. Static detection is a commonly used

technique in the identification of Android malware.

This technique examines the content of an Android

application's APK files statically in order to identify

any possible security risks. Almost all static detection

techniques used nowadays are built on APK files. In

order to provide a thorough description of data

samples, existing static detection algorithms often use

the concept of "comprehensive analysis," which

entails parsing as many files as possible from the

compressed package and extracting various sorts of

feature information from them. Even while this

method may provide outcomes that are somewhat

good, there are additional issues.

For instance, a thorough analysis results in an

excessive amount of analysis complexity and time;

also, data redundancy is caused by feature

correlations. Thus, the keys to figuring out if a

detection technique is efficient are what to pick as the

foundation for analysis and how to properly describe

the data sample.

2 RELATED WORK

A significant amount of relevant work has been done

to support the advancement of malware detection [3–

4].

2.1 Analysis of Static Detection

The majority of conventional detection techniques

rely on the signature authentication mechanism [5–6].

They entered the known harmful software's

signatures into the database. After that, the sample's

signature was taken out and matched to the database

to see whether any dangerous software was there.

Despite being straightforward and successful, this

strategy has two significant flaws: First, the unknown

malware cannot be found using the conventional

way. Malware can evade signature-based

identification by making minor code changes in an

application that do not impact semantics. This is

because the corresponding signature of unknown

malware does not exist in the database and it is costly

to create a new signature and publish it through other

methods.

Malware detection now includes more static

characteristics in order to address the aforementioned

issues. Malware often has to request the necessary

authorizations before it can carry out destructive

operations like sending text messages and accessing

contact lists. As a result, permission-based static

detection techniques have been put out. As an

example, the authors [7] compared how permissions

were used by malicious and benign programs. They

discovered that there was no practical way to

differentiate them using those shared rights. When

the amount of permissions needed was little,

however, the difference became clear; Huang Liang

et al. [8] created a list of all permission combinations

that typically occur in malware and utilized it to

create a detection model.

The API, which serves as the foundation for

implementing application functionality in the

Android system, is a good representation of an

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 3

application's behavior. Thus, many techniques for

static detection that rely on API analysis have been

researched. The writers [9] disassembled APK files,

for instance. It might gather API requests that pose a

significant risk to user security via data stream

analysis; To increase the detection accuracy, the

authors in [10] examined a variety of characteristics

in addition to permissions and APIs, including

activities, services, intents, and network addresses;

TaeGuen Kim et al. [11] expanded the feature set to

include opcodes and environment variables.

Furthermore, according to some studies, the use of

string characteristics is susceptible to dimensionality.

However, structural characteristics are better suited

for handling large amounts of data. Wei Wang et al.

[13] and Yao Du et al. [14] created the function call

graph based on the call relationship between

methods, while Jixin Zhang et al. [12] built the

Dalvik opcode graph and examined its topology

features, such as node number, probability density,

and graph distance, to characterize malware. In order

to classify malware, graph similarity was determined.

2.2 Artificial Intelligence

The fast advancement of artificial intelligence in

recent years has made machine learning a prominent

topic for study across many disciplines. Its ideas and

techniques have been used extensively in engineering

and scientific research to overcome challenging

issues. The core of malware detection is a

classification problem that satisfies relevant machine

learning constraints. As a result, enhancing detection

efficiency using machine learning has emerged as a

key area of research for malware detection.

In machine learning, supervised learning is one of the

most used techniques for training models. From the

labeled data, it derives the mapping relationship (i.e.,

function), and then uses this connection to conduct

instance inferences on the unlabeled data. Support

vector machines (SVM), decision trees, K closest

neighbors (KNN), Bayesian networks, and others are

examples of common supervised learning methods.

Because labeled data gathering is rather expensive,

supervised learning really takes a lot of time and

highly qualified professionals to finish. Unsupervised

learning has thus emerged as a different technique for

overcoming this constraint. The training data in

unsupervised learning is not labeled. The association

between the variables is discovered by the model

itself during its "self-learning" training phase. The

clustering method is the most often used

unsupervised learning algorithm. Literature [14], for

instance, examined the clustering K-MEANS

method. In order to create feature vectors, it gathered

the runtime traffic of Android apps and chose six

characteristics: frame length, frame number,

connection duration, relative duration (time from the

first frame), source port, and destination port. The

experiment in [14] demonstrated the excellent

malware detection accuracy of the KMEANS

algorithm.

Deep learning has been steadily used in malware

detection with the arrival of neural networks and the

big data age. In reference [15], the writers established

a correlation between the attributes of static and

dynamic analysis. In [16], the authors used system

calls and permissions to model neural networks; in

[17], the authors proposed a convolutional neural

network-based system for Android malware detection

that used the application's original opcode sequence

as a feature; in [18], the detection system employed a

variety of classifiers, including deep neural networks.

Deep belief networks were used to characterize

malware in this study. It made a variety of data entry

possible, including permissions, intents, system

actions, and API calls.

3 PROPOSED METHOD

This research uses machine learning to provide a

static detection approach based on sensitive pattern

for Android malware detection. The general design of

the suggested technique is shown in Fig. 2. To find

out about permissions and API calls, it first

disassembles the Android applications' APK files.

Subsequently, sensitive patterns of both malware and

regular software are produced by clustering patterns,

mining common combinations, and filtering raw data.

The feature vectors containing the sensitive patterns

are then built.

Lastly, a machine learning approach is used to train

the malware detection model.

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 4

Fig. 2: The overall architecture of the method.

3.1 Extraction of Raw data

In our suggested approach, sensitive patterns cannot

be created until the Android software's raw data has

been retrieved. Reverse engineering tools must thus

be used in order to retrieve the permission and APK

files from the raw data. As shown in Tab. 1, the

reverse engineering tool used in this work is Apktool

[19–20]. It offers a ton of commands for APK file

compilation and decompilation. To begin the

decompilation of the APK file, enter "apktool d

xx.apk" on the command line window, where xx is

the name of the APK file. After the command is

executed, a folder containing different decompiled

files will be generated in the same directory as the

APK file. The AndroidManifest.xml file, smali file,

res file, and assets file are the primary files in the

folder. The suggested approach focuses on the

permissions data from the androidmanifest.xml file

and the API call data from the smali file.

Tab 1: The relevant Apktool instructions (partial).

Android offers an application framework with a

permission-based security paradigm to limit

application access to permissions including phone,

network, contacts, SMS, and GPS position. As shown

in Fig. 3, the developer must utilize the <uses-

permission> element in AndroidManifest.xml to

specify the necessary permissions. Normal

permission, hazardous permission, and signing

permission are the three categories into which these

permissions are separated [21]. By matching the term

".permission" in the AndroidManifest.xml file, our

suggested technique obtains the permission

information.

(1) Normal: The least dangerous kind of

authorization for the user, system program, or device

is this one. When an app is installed, regular rights

are often provided by default.

(2) Risky: This kind of authorization may access the

device's critical sensors and personal info.

As a result, when an application is installed, users

voluntarily provide potentially harmful rights.

(3) Signing: System programs have access to signing

rights. When an app requests permission and is

signed with the same developer certificate as the app

that requested it, the permission is granted.

Fig. 3: Permissions declared in AndroidManifest.xml

Fig. 4: API described in smali file.

4 EVALUATION

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 5

We carry out in-depth trials to assess the

effectiveness of the suggested strategy.

4.1 The environment of simulation

Both malware and regular software samples were

included in the datasets utilized in this investigation.

The malware sample set among them is sourced from

the well-known malware-sharing website Virus Share

in the network security space. The sample set is

separated into two sections based on when the data

was gathered: 2791 malware samples in 2017 and

8183 malware samples collected between 2014 and

2016. There are 9058 normal software examples in

the normal software sample collection, which is

sourced from many official app stores including 360

Assistant, Google Play, and others. This research

employs the Virus Total tool to filter the crawling

regular software samples in order to assure the

quality of the dataset. Consequently, 8745 is the total

number of standard software samples that were

employed in the experiment.

Furthermore, the collection contains almost 90% of

samples that are less than 10MB. The percentage of

samples greater than 20 MB is around 3%. There are

two sizes of samples: one is merely 1KB and the

other is 87MB. About the experimental platform,

Windows 10 (64-bit) is the operating system, and

every experiment in this study is performed on a PC

with a dual-core 3.7GHz CPU and 8G of RAM. All

of the experimental programs are created in Python

and are operated via the Spyder software.

4.2 The Enhanced FP-growth Algorithm's

Performance

We evaluate the performance of the enhanced FP-

growth algorithm with the original FPgrowth in this

work. Each sample in our dataset has a varied amount

of sensitive permissions and API calls—anywhere

from handful to hundreds. The quantity of often

occurring item sets and the mining duration of the

two methods with varying minimal support are

shown in Table 1. The amount of frequent item sets

mined using the enhanced FP-growth is fewer than

that using the original one, as seen in Tab. 4, because

of the pruning technique. Furthermore, the difference

is more noticeable when the minimal support drops.

Therefore, while mining sensitive patterns, our

enhanced FP-growth may effectively prevent

duplication. Better yet, the enhanced FP-growth is

more efficient and can finish mining faster.

Tab 4: A comparison of the two FP-growth's

performance

4.3 Performance of the mGBDT Algorithm

The mGBDT technique is included in our suggested

approach to train the detection model. We compare it

to established machine learning classification

methods like Support Vector Machine (SVM),

Decision Tree (DT), Random Forest (RF), and

XGBoost in order to assess its performance.

The assessment metrics used in our experiment are

Accuracy, Precision, and Recall, as shown by the

formulae (15)–(17).

Of these, TP and FP stand for the quantity of

malware that was accurately identified as such and

the quantity of regular software that was mistakenly

identified as malicious, respectively. The numbers

TN and FN stand for the number of malware that was

mistakenly identified as legitimate software and the

amount of properly identified normal software.

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 6

Fig. 7 The effectiveness of various algorithms.

The detection results produced by using mGBDT and

comparison techniques to train the detection model

are shown in Fig. 7. As Fig. 7 illustrates, mGBDT

performs noticeably better than other methods. The

mGBDT has shown improvements in accuracy

ranging from 3%–6%, precision rate improvement

from 2%–4%, and recall rate rise from 3%–8%.

In this experiment, XGBoost—an enhanced gradient

boosting decision tree—demonstrates greater

detection accuracy and recall. However, mGBDT is

more advantageous than XGBoost in terms of

accuracy. For malicious software detection systems,

this is crucial since high accuracy reduces the

possibility of false positives.

4.4 The Performance of Detection

We contrast the suggested approach with other

related approaches (the references [26] and [27]),

which also examine permissions and API calls of

Android applications, in order to verify the

superiority of the suggested approach. Reference [26]

examined how permissions and API updates varied

between Android system versions and suggested a

detailed malware detection technique for varying API

levels. The use of permissions and API calls in

malware and legitimate applications, respectively,

was examined in Reference [27]. Based on the

mapping link between permissions and APIs, it

selected 50 highly sensitive API calls as

differentiating characteristics.

Fig. 8: Comparing the effectiveness of various

approaches for detection

The detection performance of several approaches on

the dataset used in this work is shown in Fig. 8. On

our dataset, the compared algorithms provide

accuracy values of 90.18% and 92.61%, respectively.

They fall short of our suggested detection approach

by 93.99%. Thus, our suggested detection approach

may more accurately identify malware by examining

the permission data and API call data in the APK

files.

Fig.9 the effectiveness of modern virus detection.

http://www.jbstonline.com/

Mr.N.Nagendra etal, JBio sci Tech, Vol 10(3),2022, 01-07
ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Page | 7

We assess the generalization for various detection

techniques on novel malware by using the samples

gathered between 2014 and 2016 as the training set

and the samples gathered during the first half of 2017

as the test set. The detection results for malware

samples published in various months of 2017 are

shown in Fig. 9. As we can see, our approach finds

new viruses more effectively. It implies that when

using our approach, the detecting system doesn't need

to be updated regularly.

4.5 How Well API Calls and Permissions Combine

This article generates critical patterns of Android

applications using both API calls and permissions.

We also run studies about the use of permissions or

API calls to demonstrate the efficacy of combining

them.

Performance of detection models constructed with

various attributes is shown in Tab. 5.

A single kind of static feature has limits when it

comes to differentiating between dangerous and

benign programs, as Tab. 5 illustrates. We can

successfully enhance the detection model's

performance by merging many characteristics.

5 CONCLUSION

This research suggests a sensitive pattern-based

approach for Android virus detection. We efficiently

prevent repetition by mining frequently occurring

combinations of critical permissions and API

requests in both malicious and benign applications

using an enhanced FP-growth algorithm. To reduce

feature dimensionality, we cluster the produced

sensitive patterns based on text similarity and support

similarity. In addition, a malware detection model

with excellent accuracy and good generalization

ability is constructed using the multi-layered gradient

boosting decision trees approach. Nevertheless, this

paper's suggested detection approach merely takes

into account how often sensitive patterns appear in

malicious and benign software sets. It does not take

into account the variations in sensitive patterns in

certain samples. In order to more precisely describe

the samples, sample weight may thus be allocated to

sensitive patterns in future research projects based on

the quantity of API calls and other variables.

REFERENCES

[1] Sk H K. A Literature Review on Android Mobile

Malware Detection using Machine Learning

Techniques. International Conference on Computing

Methodologies and Communication (ICCMC), 2022:

986- 991.

[2] Sharma S, Khanna K, Ahlawat P. Survey for

Detection and Analysis of Android Malware (s)

Through Artificial Intelligence Techniques. Cyber

Security and Digital Forensics. Springer, Singapore,

2022, 321-337.

[3] Wang L, Wang H, He R, et al. MalRadar:

Demystifying Android Malware in the New Era.

Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 2022, 6(2): 1-27.

[4] Wang L, Wang H, He R, et al. MalRadar:

Demystifying Android Malware in the New Era.

Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 2022, 6(2): 1-27.

[5] Fan W, Liu D, Wu F, et al. Android Malware

Detection Based on Functional Classification. IEICE

Transactions on Information and Systems, 2022,

105(3): 656-666.

[6] Xin Luo, MengChu Zhou, Hareton Leun, Yunni

Xia, Qingsheng Zhu, Zhuhong You, and Shuai Li. An

Incremental-and-Static-Combined Scheme for

Matrix-Factorization-Based Collaborative Filtering.

IEEE Transactions on Automation Science and

Engineering, 2016, 13(1): 333-343.

[7] Borja Sanz, Igor Santos, Carlos Laorden, Xabier

Ugarte-Pedrero, Pablo Garcia Bringas, and Gonzalo

Álvarez. Permission Usage to Detect Malware in

Android. International Joint Conference CISIS’12-

ICEUTE´12-SOCO´12 Special Sessions, 2013, 289-

298.

[8] Shuang Liang, and Xiaojiang Du. Permission-

combination-based scheme for Android mobile

malware detection. IEEE International Conference

on Communications (ICC), 2014, 2301-2306.

[9] Yousra Aafer, Wenliang Du, and Heng Yin.

DroidAPIMiner: Mining API-Level Features for

Robust Malware Detection in Android. Security and

Privacy in Communication Networks, 2013, 86-103.

[10] Daniel Arp, Michael Spreitzenbarth, Malte

Hubner, Hugo Gascon, and Konrad Rieck. Drebin:

Effective and Explainable Detection of Android

Malware in Your Pocket. Network and Distributed

System Security Symposium (NDSS), 2014, 23-26.

http://www.jbstonline.com/

