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Abstract:  
 

Malware detection systems have faced significant hurdles and strain in recent years due to the fast growth in the 

quantity and variety of Android malware. Static detection is a popular technique in academics and business for 

identifying Android malware. However, the current static detecting approaches compromise the unduly high 

analysis complexity and time cost in order to enhance the detection accuracy. Furthermore, a significant quantity 

of data becomes redundant due to the connection between static characteristics. As a result, our research 

suggests a static technique based on sensitive patterns for identifying Android malware. It reduces the creation of 

superfluous data by mining common combinations of sensitive permissions and API requests in both dangerous 

and benign applications using an enhanced FP-growth algorithm. Furthermore, the multi-layered gradient 

boosting decision trees approach is used in this work to train the detection model. Additionally, a dual similarity 

combination approach is suggested to assess how similar certain sensitive patterns are to one another. The 

experimental findings demonstrate the excellent generalization capacity and high accuracy of our suggested 

detection approach. 
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1 INTRODUCTION 
 

The use of different mobile communication devices, 

such as smartphones, tablets, and wristbands, is rising 

in tandem with the rapid development of these 

technologies. Numerous mobile terminal operating 

systems have surfaced to provide a satisfactory user 

experience; the Android operating system (OS) has 

the most market share among them. As to the 

International Data Corporation (IDC) study on the 

worldwide smartphone operating system industry, 

Android holds the top position with a market share of 

86.7% [1]. As shown in Fig. 1, the Android system 

often uses a hierarchical design architecture. The 

Linux kernel serves as the foundation for the Android 

system's kernel area. The virtual machine operating 

environment, API framework, and local system 

library make up the top user space of the Android 

system. Permission access requests serve as the link 

between the user and kernel spaces. This hierarchical 

structure has the benefit of hiding the particulars of 

the bottom layer's implementation. It may conceal 

layer discrepancies and provide consistent services to 

the top levels using the lower layers. Therefore, when 

changes happen at a lower layer, the Android 

system's hierarchical structure is unaffected on the 

top layer. Moreover, fixed Service Access Points 

(SAP) may be provided by each layer to attain high 

cohesiveness and low coupling. The Android 

system's hierarchical structure provides a robust 

open-sourcing feature and a relaxed approach for 

application release certification. With the Android 
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system, developers are free to publish their own 

applications without any limitations. Additionally, 

users have access to a variety of download locations 

for these necessary apps, such as third-party app 

markets and official app stores. However, Android 

has emerged as one of the most susceptible platforms 

to malware attacks due to its open-sourcing 

characteristic. 

According to McAfee's mobile threat report [2], 

which was published in the first quarter of 2021, 

there are already over 40 million mobile malware 

samples in total, and the growth pace is still quite 

rapid. Through analyzing the malevolent actions of 

malware, we have ascertained that the majority of 

them aim to pilfer users' confidential data, including 

personal images, bank accounts, emails, text 

messages, and phone contacts. This has the negative 

effect of enabling criminals to gather this private data 

via malware and utilize it for illicit operations to 

generate revenue. 

 

Fig. 1: Android system architecture. 

Researchers in academia and business have 

developed several strategies and tools for detection in 

order to safeguard users from malware and provide a 

secure and healthy mobile communication 

environment. Static detection is a commonly used 

technique in the identification of Android malware. 

This technique examines the content of an Android 

application's APK files statically in order to identify 

any possible security risks. Almost all static detection 

techniques used nowadays are built on APK files. In 

order to provide a thorough description of data 

samples, existing static detection algorithms often use 

the concept of "comprehensive analysis," which 

entails parsing as many files as possible from the 

compressed package and extracting various sorts of 

feature information from them. Even while this 

method may provide outcomes that are somewhat 

good, there are additional issues. 

For instance, a thorough analysis results in an 

excessive amount of analysis complexity and time; 

also, data redundancy is caused by feature 

correlations. Thus, the keys to figuring out if a 

detection technique is efficient are what to pick as the 

foundation for analysis and how to properly describe 

the data sample. 

 

2 RELATED WORK 
 

A significant amount of relevant work has been done 

to support the advancement of malware detection [3–

4]. 

 

2.1 Analysis of Static Detection 

The majority of conventional detection techniques 

rely on the signature authentication mechanism [5–6]. 

They entered the known harmful software's 

signatures into the database. After that, the sample's 

signature was taken out and matched to the database 

to see whether any dangerous software was there. 

Despite being straightforward and successful, this 

strategy has two significant flaws: First, the unknown 

malware cannot be found using the conventional 

way. Malware can evade signature-based 

identification by making minor code changes in an 

application that do not impact semantics. This is 

because the corresponding signature of unknown 

malware does not exist in the database and it is costly 

to create a new signature and publish it through other 

methods. 

Malware detection now includes more static 

characteristics in order to address the aforementioned 

issues. Malware often has to request the necessary 

authorizations before it can carry out destructive 

operations like sending text messages and accessing 

contact lists. As a result, permission-based static 

detection techniques have been put out. As an 

example, the authors [7] compared how permissions 

were used by malicious and benign programs. They 

discovered that there was no practical way to 

differentiate them using those shared rights. When 

the amount of permissions needed was little, 

however, the difference became clear; Huang Liang 

et al. [8] created a list of all permission combinations 

that typically occur in malware and utilized it to 

create a detection model. 

The API, which serves as the foundation for 

implementing application functionality in the 

Android system, is a good representation of an 
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application's behavior. Thus, many techniques for 

static detection that rely on API analysis have been 

researched. The writers [9] disassembled APK files, 

for instance. It might gather API requests that pose a 

significant risk to user security via data stream 

analysis; To increase the detection accuracy, the 

authors in [10] examined a variety of characteristics 

in addition to permissions and APIs, including 

activities, services, intents, and network addresses; 

TaeGuen Kim et al. [11] expanded the feature set to 

include opcodes and environment variables. 

Furthermore, according to some studies, the use of 

string characteristics is susceptible to dimensionality. 

However, structural characteristics are better suited 

for handling large amounts of data. Wei Wang et al. 

[13] and Yao Du et al. [14] created the function call 

graph based on the call relationship between 

methods, while Jixin Zhang et al. [12] built the 

Dalvik opcode graph and examined its topology 

features, such as node number, probability density, 

and graph distance, to characterize malware. In order 

to classify malware, graph similarity was determined. 

 

2.2 Artificial Intelligence 

The fast advancement of artificial intelligence in 

recent years has made machine learning a prominent 

topic for study across many disciplines. Its ideas and 

techniques have been used extensively in engineering 

and scientific research to overcome challenging 

issues. The core of malware detection is a 

classification problem that satisfies relevant machine 

learning constraints. As a result, enhancing detection 

efficiency using machine learning has emerged as a 

key area of research for malware detection. 

In machine learning, supervised learning is one of the 

most used techniques for training models. From the 

labeled data, it derives the mapping relationship (i.e., 

function), and then uses this connection to conduct 

instance inferences on the unlabeled data. Support 

vector machines (SVM), decision trees, K closest 

neighbors (KNN), Bayesian networks, and others are 

examples of common supervised learning methods. 

Because labeled data gathering is rather expensive, 

supervised learning really takes a lot of time and 

highly qualified professionals to finish. Unsupervised 

learning has thus emerged as a different technique for 

overcoming this constraint. The training data in 

unsupervised learning is not labeled. The association 

between the variables is discovered by the model 

itself during its "self-learning" training phase. The 

clustering method is the most often used 

unsupervised learning algorithm. Literature [14], for 

instance, examined the clustering K-MEANS 

method. In order to create feature vectors, it gathered 

the runtime traffic of Android apps and chose six 

characteristics: frame length, frame number, 

connection duration, relative duration (time from the 

first frame), source port, and destination port. The 

experiment in [14] demonstrated the excellent 

malware detection accuracy of the KMEANS 

algorithm. 

Deep learning has been steadily used in malware 

detection with the arrival of neural networks and the 

big data age. In reference [15], the writers established 

a correlation between the attributes of static and 

dynamic analysis. In [16], the authors used system 

calls and permissions to model neural networks; in 

[17], the authors proposed a convolutional neural 

network-based system for Android malware detection 

that used the application's original opcode sequence 

as a feature; in [18], the detection system employed a 

variety of classifiers, including deep neural networks. 

Deep belief networks were used to characterize 

malware in this study. It made a variety of data entry 

possible, including permissions, intents, system 

actions, and API calls. 

 

3 PROPOSED METHOD 
 

This research uses machine learning to provide a 

static detection approach based on sensitive pattern 

for Android malware detection. The general design of 

the suggested technique is shown in Fig. 2. To find 

out about permissions and API calls, it first 

disassembles the Android applications' APK files. 

Subsequently, sensitive patterns of both malware and 

regular software are produced by clustering patterns, 

mining common combinations, and filtering raw data. 

The feature vectors containing the sensitive patterns 

are then built. 

Lastly, a machine learning approach is used to train 

the malware detection model. 
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Fig. 2: The overall architecture of the method. 

 

3.1 Extraction of Raw data 

In our suggested approach, sensitive patterns cannot 

be created until the Android software's raw data has 

been retrieved. Reverse engineering tools must thus 

be used in order to retrieve the permission and APK 

files from the raw data. As shown in Tab. 1, the 

reverse engineering tool used in this work is Apktool 

[19–20]. It offers a ton of commands for APK file 

compilation and decompilation. To begin the 

decompilation of the APK file, enter "apktool d 

xx.apk" on the command line window, where xx is 

the name of the APK file. After the command is 

executed, a folder containing different decompiled 

files will be generated in the same directory as the 

APK file. The AndroidManifest.xml file, smali file, 

res file, and assets file are the primary files in the 

folder. The suggested approach focuses on the 

permissions data from the androidmanifest.xml file 

and the API call data from the smali file. 

Tab 1: The relevant Apktool instructions (partial). 

 

 

Android offers an application framework with a 

permission-based security paradigm to limit 

application access to permissions including phone, 

network, contacts, SMS, and GPS position. As shown 

in Fig. 3, the developer must utilize the <uses-

permission> element in AndroidManifest.xml to 

specify the necessary permissions. Normal 

permission, hazardous permission, and signing 

permission are the three categories into which these 

permissions are separated [21]. By matching the term 

".permission" in the AndroidManifest.xml file, our 

suggested technique obtains the permission 

information. 

(1) Normal: The least dangerous kind of 

authorization for the user, system program, or device 

is this one. When an app is installed, regular rights 

are often provided by default. 

(2) Risky: This kind of authorization may access the 

device's critical sensors and personal info. 

As a result, when an application is installed, users 

voluntarily provide potentially harmful rights. 

(3) Signing: System programs have access to signing 

rights. When an app requests permission and is 

signed with the same developer certificate as the app 

that requested it, the permission is granted. 

 

Fig. 3: Permissions declared in AndroidManifest.xml 

 

Fig. 4: API described in smali file. 

4 EVALUATION 
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We carry out in-depth trials to assess the 

effectiveness of the suggested strategy. 

4.1 The environment of simulation 

Both malware and regular software samples were 

included in the datasets utilized in this investigation. 

The malware sample set among them is sourced from 

the well-known malware-sharing website Virus Share 

in the network security space. The sample set is 

separated into two sections based on when the data 

was gathered: 2791 malware samples in 2017 and 

8183 malware samples collected between 2014 and 

2016. There are 9058 normal software examples in 

the normal software sample collection, which is 

sourced from many official app stores including 360 

Assistant, Google Play, and others. This research 

employs the Virus Total tool to filter the crawling 

regular software samples in order to assure the 

quality of the dataset. Consequently, 8745 is the total 

number of standard software samples that were 

employed in the experiment. 

Furthermore, the collection contains almost 90% of 

samples that are less than 10MB. The percentage of 

samples greater than 20 MB is around 3%. There are 

two sizes of samples: one is merely 1KB and the 

other is 87MB. About the experimental platform, 

Windows 10 (64-bit) is the operating system, and 

every experiment in this study is performed on a PC 

with a dual-core 3.7GHz CPU and 8G of RAM. All 

of the experimental programs are created in Python 

and are operated via the Spyder software. 

4.2 The Enhanced FP-growth Algorithm's 

Performance 

We evaluate the performance of the enhanced FP-

growth algorithm with the original FPgrowth in this 

work. Each sample in our dataset has a varied amount 

of sensitive permissions and API calls—anywhere 

from handful to hundreds. The quantity of often 

occurring item sets and the mining duration of the 

two methods with varying minimal support are 

shown in Table 1. The amount of frequent item sets 

mined using the enhanced FP-growth is fewer than 

that using the original one, as seen in Tab. 4, because 

of the pruning technique. Furthermore, the difference 

is more noticeable when the minimal support drops. 

Therefore, while mining sensitive patterns, our 

enhanced FP-growth may effectively prevent 

duplication. Better yet, the enhanced FP-growth is 

more efficient and can finish mining faster. 

Tab 4: A comparison of the two FP-growth's 

performance 

 

4.3 Performance of the mGBDT Algorithm 

The mGBDT technique is included in our suggested 

approach to train the detection model. We compare it 

to established machine learning classification 

methods like Support Vector Machine (SVM), 

Decision Tree (DT), Random Forest (RF), and 

XGBoost in order to assess its performance. 

The assessment metrics used in our experiment are 

Accuracy, Precision, and Recall, as shown by the 

formulae (15)–(17). 

 

Of these, TP and FP stand for the quantity of 

malware that was accurately identified as such and 

the quantity of regular software that was mistakenly 

identified as malicious, respectively. The numbers 

TN and FN stand for the number of malware that was 

mistakenly identified as legitimate software and the 

amount of properly identified normal software. 
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Fig. 7 The effectiveness of various algorithms. 

The detection results produced by using mGBDT and 

comparison techniques to train the detection model 

are shown in Fig. 7. As Fig. 7 illustrates, mGBDT 

performs noticeably better than other methods. The 

mGBDT has shown improvements in accuracy 

ranging from 3%–6%, precision rate improvement 

from 2%–4%, and recall rate rise from 3%–8%. 

In this experiment, XGBoost—an enhanced gradient 

boosting decision tree—demonstrates greater 

detection accuracy and recall. However, mGBDT is 

more advantageous than XGBoost in terms of 

accuracy. For malicious software detection systems, 

this is crucial since high accuracy reduces the 

possibility of false positives. 

 

4.4 The Performance of Detection 

We contrast the suggested approach with other 

related approaches (the references [26] and [27]), 

which also examine permissions and API calls of 

Android applications, in order to verify the 

superiority of the suggested approach. Reference [26] 

examined how permissions and API updates varied 

between Android system versions and suggested a 

detailed malware detection technique for varying API 

levels. The use of permissions and API calls in 

malware and legitimate applications, respectively, 

was examined in Reference [27]. Based on the 

mapping link between permissions and APIs, it 

selected 50 highly sensitive API calls as 

differentiating characteristics. 

 
 

Fig. 8: Comparing the effectiveness of various 

approaches for detection 

The detection performance of several approaches on 

the dataset used in this work is shown in Fig. 8. On 

our dataset, the compared algorithms provide 

accuracy values of 90.18% and 92.61%, respectively. 

They fall short of our suggested detection approach 

by 93.99%. Thus, our suggested detection approach 

may more accurately identify malware by examining 

the permission data and API call data in the APK 

files. 

 
Fig.9 the effectiveness of modern virus detection. 
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We assess the generalization for various detection 

techniques on novel malware by using the samples 

gathered between 2014 and 2016 as the training set 

and the samples gathered during the first half of 2017 

as the test set. The detection results for malware 

samples published in various months of 2017 are 

shown in Fig. 9. As we can see, our approach finds 

new viruses more effectively. It implies that when 

using our approach, the detecting system doesn't need 

to be updated regularly. 

 

4.5 How Well API Calls and Permissions Combine 

This article generates critical patterns of Android 

applications using both API calls and permissions. 

We also run studies about the use of permissions or 

API calls to demonstrate the efficacy of combining 

them. 

Performance of detection models constructed with 

various attributes is shown in Tab. 5. 

 

 
 

A single kind of static feature has limits when it 

comes to differentiating between dangerous and 

benign programs, as Tab. 5 illustrates. We can 

successfully enhance the detection model's 

performance by merging many characteristics. 

5 CONCLUSION 
 

This research suggests a sensitive pattern-based 

approach for Android virus detection. We efficiently 

prevent repetition by mining frequently occurring 

combinations of critical permissions and API 

requests in both malicious and benign applications 

using an enhanced FP-growth algorithm. To reduce 

feature dimensionality, we cluster the produced 

sensitive patterns based on text similarity and support 

similarity. In addition, a malware detection model 

with excellent accuracy and good generalization 

ability is constructed using the multi-layered gradient 

boosting decision trees approach. Nevertheless, this 

paper's suggested detection approach merely takes 

into account how often sensitive patterns appear in 

malicious and benign software sets. It does not take 

into account the variations in sensitive patterns in 

certain samples. In order to more precisely describe 

the samples, sample weight may thus be allocated to 

sensitive patterns in future research projects based on 

the quantity of API calls and other variables. 
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